Installation:

1. Installation of all IDEM interlock switches must be in accordance with a risk assessment for the individual application. Installation must only be carried out by competent personnel and in accordance with these instructions.

2. M5 mounting bolts must be used to fix the switch and actuator, the tightening torque to ensure reliable fixing is 4.0 Nm. Tightening torque for the lid screws, conduit entry plugs and cable glands must be 1.0 Nm to ensure IP seal. Tightening torque for the connection terminal screws is 0.8 Nm, recommended conductor size is 1.5 – 2.5 sq.mm.

3. Always fit a mechanical stop to the guard to prevent damage to the front of the switch. The switch head position can be rotated by opening the lid and then pulling the end cover away from the switch and then rotating to the position required. Set the actuator gap to 3mm when the guard is closed and against the stop. (See Fig. A.) Use alignment guides to ensure that the actuator enters the switch without interfering with the sides of the aperture. Always fit the aperture plug to the unused entry aperture to prevent foreign debris entering the switch mechanism.

4. After installation check operation of all control circuits ensuring that when the actuator is out of the switch, the machine cannot be started.

Application/Operation:

Tongue operated Safety Interlock Switches are designed to fit to the leading edge of sliding, hinged or lift off machine guards to provide positively operated switching contacts and provide a tamper resistant actuator mechanism. They are designed to provide robust position interlock detection for moving guards.

The switch is rigidly mounted to the frame of the guard or machine. The actuator is fitted to the moving part (frame) of the guard and is aligned to the switch entry aperture. The actuator profile is designed to match a cam mechanism within the switch head and provides a positively operated not easily defeatable interlock switch. When the actuator is inserted into the switch the safety contacts close and allow the machine start circuit to be enabled. When the actuator is withdrawn the safety contacts are positively opened and the machine circuit is broken.

IMPORTANT NOTE:

Read and understand these instructions before installing, operating, or maintaining this equipment. The product is designed to be a component of a customised safety orientated control system. It is the responsibility of the user to ensure the correct overall functionality of its systems and machines. IDEM, its subsidiaries and affiliates, are not in a position to guarantee all of the characteristics of a given system or product not designed by IDEM.

Maintenance:

Every Month:
- Check the switch actuator and body for signs of mechanical damage and wear. Replace any switch showing damage.
- Isolate power and remove cover. Check screw terminal tightness and check for signs of moisture ingress. Never attempt to repair any switch. These requirements form part of the product warranty.

Every 6 Months:
- Check for mechanical damage to switch body or actuator. Replace any switch showing damage.
- Set the actuator gap to 3mm when the guard is closed and against the stop. (See Fig. A.)
- Use alignment guides to ensure that the actuator enters the switch without interfering with the sides of the aperture.
- Always fit the aperture plug to the unused entry aperture to prevent foreign debris entering the switch mechanism.

Contact operation at withdrawal of actuator

<table>
<thead>
<tr>
<th>2NC 1NO</th>
<th>6.8 6.0 0 mm</th>
<th>3NC 1NO</th>
<th>6.8 6.0 0 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/12</td>
<td>Open</td>
<td>11/12</td>
<td>Open</td>
</tr>
<tr>
<td>12/12</td>
<td>Open</td>
<td>3/34</td>
<td>Open</td>
</tr>
<tr>
<td>21/22</td>
<td>Open</td>
<td>31/32</td>
<td>Open</td>
</tr>
<tr>
<td>43/44</td>
<td>Open</td>
<td>43/44</td>
<td>Open</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4NC</th>
<th>6.0 0 mm</th>
<th>3NC 2NO</th>
<th>6.8 6.0 0 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/12</td>
<td>Open</td>
<td>11/12</td>
<td>Open</td>
</tr>
<tr>
<td>21/22</td>
<td>Open</td>
<td>31/32</td>
<td>Open</td>
</tr>
<tr>
<td>43/44</td>
<td>Open</td>
<td>43/44</td>
<td>Open</td>
</tr>
</tbody>
</table>

IMPORTANT

The Risk Assessment for the particular application should include the risk of spare actuators. Spare actuators should not be readily available and must be securely controlled. Application consideration must be given to the fixing of the actuator which has to be in a way that prevents disassembly by easy means. The safety functions and mechanics must be tested regularly. For applications were infrequent guard access is foreseeable, the system must have a manual function test to detect a possible accumulation of faults. At least once per month for PLc Cat3 or once per year for PLd Cat3 (ISO13849-1). Where possible it is recommended that the control system of the machine demands and monitors these tests, and stops or prevents the machine from starting if the test is not done. (See ISO14119).
Application Example: Door Interlock - Dual Channel non-monitored.

The switch contacts 11-12 and 21-22 from each switch are wired in series to an SCR-3-i Safety Relay to monitor for wiring short circuits. This provides Dual Channel monitoring and a check of the contactor feedback circuits through the auxiliary contacts (A) of K1 and K2. The SCR-3-i monitors the switches and the contactors K1 and K2 and provides its own self-monitoring via force guided internal relays.

System is shown with machine stopped, guards closed and the contactors able to be energized. (E Stop switch is optional).

Application Example: Door Interlocks - Dual Channel monitored

The switch contacts 11-12 and 21-22 from each switch are wired in series to an SCR-3 Safety Relay to monitor for wiring short circuits. This provides Dual Channel monitoring and a check of the contactor feedback circuits through the auxiliary contacts (A) of K1 and K2. The SCR-3 monitors the switch and the contactors K1 and K2 and provides its own self-monitoring via force guided internal relays.

System is shown with machine stopped, guards closed and the contactors able to be energized.